Submodular Maximization with Cardinality Constraints
نویسندگان
چکیده
We consider the problem of maximizing a (non-monotone) submodular function subject to a cardinality constraint. In addition to capturing well-known combinatorial optimization problems, e.g., Maxk-Coverage and Max-Bisection, this problem has applications in other more practical settings such as natural language processing, information retrieval, and machine learning. In this work we present improved approximations for two variants of the cardinality constraint for non-monotone functions. When at most k elements can be chosen, we improve the current best 1/e − o(1) approximation to a factor that is in the range [1/e + 0.004, 1/2], achieving a tight approximation of 1/2 − o(1) for k = n/2 and breaking the 1/e barrier for all values of k. When exactly k elements must be chosen, our algorithms improve the current best 1/4 − o(1) approximation to a factor that is in the range [0.356, 1/2], again achieving a tight approximation of 1/2− o(1) for k = n/2. Additionally, some of the algorithms we provide are very fast with time complexities of O(nk), as opposed to previous known algorithms which are continuous in nature, and thus, too slow for applications in the practical settings mentioned above. Our algorithms are based on two new techniques. First, we present a simple randomized greedy approach where in each step a random element is chosen from a set of “reasonably good” elements. This approach might be considered a natural substitute for the greedy algorithm of Nemhauser, Wolsey and Fisher [46], as it retains the same tight guarantee of 1 − 1/e for monotone objectives and the same time complexity of O(nk), while giving an approximation of 1/e for general non-monotone objectives (while the greedy algorithm of Nemhauser et. al. fails to provide any constant guarantee). Second, we extend the double greedy technique, which achieves a tight 1/2 approximation for unconstrained submodular maximization, to the continuous setting. This allows us to manipulate the natural rates by which elements change, thus bounding the total number of elements chosen. ∗Statistics and Operations Research Dept., Tel Aviv University, Israel. e-mail: [email protected]. Research supported in part by ISF grant 954/11 and by BSF grant 2010426. †School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland. e-mail: [email protected]. ‡Computer Science Dept., Technion, Haifa, Israel. e-mail: [email protected]. Research supported in part by the Google Inter-university center for Electronic Markets, by ISF grant 954/11, and by BSF grant 2010426. §Microsoft Research, Redmond, WA. e-mail: [email protected]
منابع مشابه
Distributed Submodular Maximization
Many large-scale machine learning problems – clustering, non-parametric learning, kernel machines, etc. – require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set function subject to various constraints. Classical approaches to submodular optimization require centralized access to the full dataset, which is impra...
متن کاملDifferentially Private Submodular Maximization: Data Summarization in Disguise (Full version)
How can we extract representative features from a dataset containing sensitive personal information, while providing individual-level privacy guarantees? Many data summarization applications are captured by the general framework of submodular maximization. As a consequence, a wide range of efficient approximation algorithms for submodular maximization have been developed. However, when such app...
متن کاملDifferentially Private Submodular Maximization: Data Summarization in Disguise
Many data summarization applications are captured by the general framework of submodular maximization. As a consequence, a wide range of efficient approximation algorithms have been developed. However, when such applications involve sensitive data about individuals, their privacy concerns are not automatically addressed. To remedy this problem, we propose a general and systematic study of diffe...
متن کاملMaximization of Non-Monotone Submodular Functions
A litany of questions from a wide variety of scientific disciplines can be cast as non-monotone submodular maximization problems. Since this class of problems includes max-cut, it is NP-hard. Thus, general purpose algorithms for the class tend to be approximation algorithms. For unconstrained problem instances, one recent innovation in this vein includes an algorithm of Buchbinder et al. (2012)...
متن کاملSubmodular Maximization over Sliding Windows
In this paper we study the extraction of representative elements in the data stream model in the form of submodular maximization. Different from the previous work on streaming submodular maximization, we are interested only in the recent data, and study the maximization problem over sliding windows. We provide a general reduction from the sliding window model to the standard streaming model, an...
متن کاملDiscrete Stochastic Submodular Maximization: Adaptive vs. Non-adaptive vs. Offline
We consider the problem of stochastic monotone submodular function maximization, subject to constraints. We give results on adaptivity gaps, and on the gap between the optimal offline and online solutions. We present a procedure that transforms a decision tree (adaptive algorithm) into a non-adaptive chain. We prove that this chain achieves at least τ times the utility of the decision tree, ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014